Abstract
In this paper, we propose a new class of techniques to identify periodicities in data. We target the period estimation directly rather than inferring the period from the signal’s spectrum. By doing so, we obtain several advantages over the traditional spectrum estimation techniques such as DFT and MUSIC. Apart from estimating the unknown period of a signal, we search for finer periodic structure within the given signal. For instance, it might be possible that the given periodic signal was actually a sum of signals with much smaller periods. For example, adding signals with periods 3, 7, and 11 can give rise to a period 231 signal. We propose methods to identify these “hidden periods” 3, 7, and 11. We first propose a new family of square matrices called Nested Periodic Matrices (NPMs), having several useful properties in the context of periodicity. These include the DFT, Walsh–Hadamard, and Ramanujan periodicity transform matrices as examples. Based on these matrices, we develop high dimensional dictionary representations for periodic signals. Various optimization problems can be formulated to identify the periods of signals from such representations. We propose an approach based on finding the least $l_{2}$ norm solution to an under-determined linear system. Alternatively, the period identification problem can also be formulated as a sparse vector recovery problem and we show that by a slight modification to the usual $l_{1}$ norm minimization techniques, we can incorporate a number of new and computationally simple dictionaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.