Abstract

Because of their poor dispersal ability, amphibians are well suited for testing the selective extinction theory on islands. Amphibian fauna in the Zhoushan archipelago, China, exhibit a high level of nestedness (C = 0.893), and the species number is lower on islands than on similar sized areas on the mainland. No correlation was found between island-specific species richness and the nearest distance from a larger island, distance from the mainland or density of human population. These results suggest that no amphibian colonisation has occurred in the archipelago since island isolation 7000-9000 years ago. Furthermore, the results imply that selective extinction contributes to the nestedness of amphibians in the Zhoushan archipelago. The incidence of a species on the islands is significantly correlated with log area of the smallest island occupied by the species and the number of provinces on the Chinese mainland in which the species occur. However, there is no correlation with average body length of adults and island occurrence. It is concluded that (1) the area of the smallest island occupied by a species is a good estimate of the minimum area for a viable population of the species and a good predictor of species incidence on islands, (2) species with a restricted distribution range are more vulnerable to extinction from islands than those with a wide distribution range and (3) the effect of body size on occurrence on the islands is uncertain, and may be specific to the archipelago and taxa studied. The observed nestedness of amphibian assemblages has two implications for conservation: (1) not only can all the species found in several small reserves be found on a large reserve of the same total size, but additional species can be found on the single large reserve; (2) for a reserve to maintain viable populations of all species in a region it should be at least as large as the smallest island occupied by the most vulnerable species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.