Abstract

When selecting a classification algorithm to be applied to a particular problem, one has to simultaneously select the best algorithm for that dataset and the best set of hyperparameters for the chosen model. The usual approach is to apply a nested cross-validation procedure: hyperparameter selection is performed in the inner cross-validation, while the outer cross-validation computes an unbiased estimate of the expected accuracy of the algorithm with cross-validation based hyperparameter tuning. The alternative approach, which we shall call “flat cross-validation”, uses a single cross-validation step both to select the optimal hyperparameter values and to provide an estimate of the expected accuracy of the algorithm that, while biased, may nevertheless still be used to select the best learning algorithm. We tested both procedures using 12 different algorithms on 115 real-life binary datasets and conclude that using the less computationally costly flat cross-validation procedure will generally result in the selection of an algorithm that is, for all practical purposes, of similar quality to that selected via nested cross-validation, provided the learning algorithms have relatively few hyperparameters to be optimised.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.