Abstract
Rule-based reasoning (RBR) and case-based reasoning (CBR) are two complementary alternatives for building knowledge-based “intelligent” decision-support systems. RBR and CBR can be combined in three main ways: RBR first, CBR first, or some interleaving of the two. The NEST system, described in this paper, allows us to invoke both components separately and in arbitrary order. In addition to the traditional network of propositions and compositional rules, NEST also supports binary, nominal, and numeric attributes used for derivation of proposition weights, logical (no uncertainty) and default (no antecedent) rules, context expressions, integrity constraints, and cases. The inference mechanism allows use of both rule-based and case-based reasoning. Uncertainty processing (based on Hájek's algebraic theory) allows interval weights to be interpreted as a union of hypothetical cases, and a novel set of combination functions inspired by neural networks has been added. The system is implemented in two versions: stand-alone and web-based client server. A user-friendly editor covering all mentioned features is included.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.