Abstract

During Drosophila pupal metamorphosis, the motoneurons and muscles differentiate synchronously, providing an opportunity for extensive intercellular regulation during synapse formation. We examined the existence of such interactions by developmentally delaying or permanently eliminating synaptic partners during the formation of indirect flight muscles. When we experimentally delayed muscle development, we found that although adult-specific primary motoneuron branching still occurred, the higher order (synaptic) branching was suspended until the delayed muscle fibers reached a favourable developmental state. In reciprocal experiments we found that denervation caused a decrease in the myoblast pool. Furthermore, the formation of certain muscle fibers (dorsoventral muscles) was specifically blocked. Exceptions were the adult muscles that use larval muscle fibers as myoblast fusion targets (dorsal longitudinal muscles). However, when these muscles were experimentally compelled to develop without their larval precursors, they showed an absolute dependence on the motoneurons for their formation. These data show that the size of the myoblast pool and early events in fiber formation depend on the presence of the nerve, and that, conversely, peripheral arbor development and synaptogenesis is closely synchronized with the developmental state of the muscle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call