Abstract
Cranial nerve transection during head and neck surgery is conventionally repaired with microsuture. Previous studies have demonstrated recovery with laser nerve welding (LNW), a novel alternative to microsuture. LNW has been reported to have poorer tensile strength, however. Laser-activated chitosan, an adhesive biopolymer, may promote nerve recovery while enhancing the tensile strength of the repair. Using a rat posterior tibial nerve injury model, we compared four different methods of nerve repair in this pilot study. Animal study. Animals underwent unilateral posterior tibial nerve transection. The injury was repaired by potassium titanyl phosphate (KTP) laser alone (n = 20), KTP + chitosan (n = 12), microsuture + chitosan (n = 12), and chitosan alone (n = 14). Weekly walking tracks were conducted to measure functional recovery (FR). Tensile strength (TS) was measured at 6 weeks. At 6 weeks, KTP laser alone had the best recovery (FR = 93.4% ± 8.3%). Microsuture + chitosan, KTP + chitosan, and chitosan alone all showed good FR (87.4% ± 13.5%, 84.6% ± 13.0%, and 84.1% ± 10.0%, respectively). One-way analysis of variance was performed (F(3,56) = 2.6, P = .061). A TS threshold of 3.8 N was selected as a control mean recovery. Three groups-KTP alone, KTP + chitosan, and microsuture + chitosan-were found to meet threshold 60% (95% confidence interval [CI]: 23.1%-88.3%), 75% (95% CI: 46.8%-91.1%), and 100% (95% CI: 75.8%-100.0%), respectively. In the posterior tibial nerve model, all repair methods promoted nerve recovery. Laser-activated chitosan as a biopolymer anchor provided good TS and appears to be a novel alternative to microsuture. This repair method may have surgical utility following cranial nerve injury during head and neck surgery. NA Laryngoscope, 127:E253-E257, 2017.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.