Abstract

The marked outgrowth of the motor nerve terminal arborization triggered by an in vivo local injection of Clostridium botulinum type-A toxin in the mouse levator auris longus muscle was studied with morphological and immunochemical approaches. The increase in total nerve terminal length depended on the time elapsed after toxin administration and was due to both increased number of terminal branches and branch length as revealed by a quantitative morphological analysis of whole mounts using the combined cholinesterase-silver stain. Nerve terminal sprouts increased in number, length and complexity even after the functional recovery of neuromuscular transmission had occurred as revealed by electrophysiological examination. Although we cannot exclude that transmitter release sites from the original nerve terminal arborization may still be functional after botulinum type-A toxin (BoTx-A) treatment, it is likely that newly formed functional release sites on the sprouts play a major role in the functional recovery of neuromuscular transmission. The presence of an immunoreactivity to synaptophysin and synaptotagmin-II, integral proteins of synaptic vesicles, gives support to our previous findings suggesting that nerve terminal sprouts have the molecular machinery for acetylcholine release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.