Abstract

Intrathecal injection of phenol (ITP) has been used to control intractable pain and spasticity. Direct caustic nerve damage has been postulated as the mechanism of analgesia. Sensation is commonly recovered, suggesting that a spontaneous regeneration process takes place. There is, however, a lack of mechanistic information on ITP therapy. To define morphologically the neurolysis and regeneration phenomena produced by ITP, anesthetized rats were subjected to laminectomy at L5; 5 microl of 22% phenol in saline solution or vehicle (control) was injected. Light and electron microscopy studies of nerve roots were performed at 2, 14, and 60 days after injection. Rats given ITP showed at the early stage a variable amount of roots with signs of infarction characterized by loss of axon-myelin units and thrombosis of intra-root vessels. At 14 days, abundance of macrophages removing debris, open vessels, and nerve sprouts was identified in damaged roots. At this time, non-myelinating glial fibrillary acidic protein-positive Schwann cells were observed in both damaged and apparently undamaged roots. At 60 days, abundance of 2',3'-cyclic nucleotide 3'-phosphodiesterase-positive Schwann cells myelinating newly formed axons was observed in damaged roots. Control rats did not show signs of neural or vascular pathology. Attempting to prevent thrombosis, another group of rats received heparin before ITP; these anti-coagulated rats developed radicular thrombosis, neurolysis, and hemorrhage. In conclusion, neurolysis produced by ITP is associated with acute ischemia (not prevented by heparin) and is followed by vascular, nerve, and myelin regeneration. Our results help understand the lack of efficacy of and some complications by ITP clinical therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.