Abstract

Regeneration distances were studied in nerves from vibration-exposed limbs. One hind limb of anaesthetized rats was attached to a vibration exciter and exposed to vibration (80 Hz/32 m/s2) for 5 h/day for 2 or 5 days. Seven days after the latest vibration period a 10-mm long nerve graft was taken from the vibrated sciatic nerve and sutured into a corresponding defect in the con-tralateral sciatic nerve and vice versa, thereby creating two different models within the same animal: (i) regeneration from a freshly transected unvibrated nerve into a vibrated graft and (ii) regeneration from a vibrated nerve into a fresh nerve graft (vibrated recipient side). Four, 6 or 8 days postoperatively (p.o.) the distances achieved by the regenerating axons were determined using the pinch reflex test. Two days of vibration did not influence the regeneration, but 5 days of vibration reduced the initial delay period and a slight reduction of regeneration rate was observed. After 5 days of vibration an increased regeneration distance was observed in both models at day 4 p.o. and at day 6 p.o. in vibrated grafts. This study demonstrates that vibration can condition peripheral nerves and this may be caused by local changes in the peripheral nerve trunk and in the neuron itself.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.