Abstract

BackgroundSince a milestone work on Neisseria meningitidis B, Reverse Vaccinology has strongly enhanced the identification of vaccine candidates by replacing several experimental tasks using in silico prediction steps. These steps have allowed scientists to face the selection of antigens from the predicted proteome of pathogens, for which cell culture is difficult or impossible, saving time and money. However, this good example of bioinformatics-driven immunology can be further developed by improving in silico steps and implementing biologist-friendly tools.ResultsWe introduce NERVE (New Enhanced Reverse Vaccinology Environment), an user-friendly software environment for the in silico identification of the best vaccine candidates from whole proteomes of bacterial pathogens. The software integrates multiple robust and well-known algorithms for protein analysis and comparison. Vaccine candidates are ranked and presented in a html table showing relevant information and links to corresponding primary data. Information concerning all proteins of the analyzed proteome is not deleted along selection steps but rather flows into an SQL database for further mining and analyses.ConclusionAfter learning from recent years' works in this field and analysing a large dataset, NERVE has been implemented and tuned as the first available tool able to rank a restricted pool (~8–9% of the whole proteome) of vaccine candidates and to show high recall (~75–80%) of known protective antigens. These vaccine candidates are required to be "safe" (taking into account autoimmunity risk) and "easy" for further experimental, high-throughput screening (avoiding possibly not soluble antigens). NERVE is expected to help save time and money in vaccine design and is available as an additional file with this manuscript; updated versions will be available at .

Highlights

  • Since a milestone work on Neisseria meningitidis B, Reverse Vaccinology has strongly enhanced the identification of vaccine candidates by replacing several experimental tasks using in silico prediction steps

  • NERVE is expected to help save time and money in vaccine design and is available as an additional file with this manuscript; updated versions will be available at http:/ /www.bio.unipd.it/molbinfo

  • Reverse Vaccinology (RV) stands as a turning stone in Vaccinology

Read more

Summary

Results

We introduce NERVE (New Enhanced Reverse Vaccinology Environment), an userfriendly software environment for the in silico identification of the best vaccine candidates from whole proteomes of bacterial pathogens. The software integrates multiple robust and well-known algorithms for protein analysis and comparison. Vaccine candidates are ranked and presented in a html table showing relevant information and links to corresponding primary data. Information concerning all proteins of the analyzed proteome is not deleted along selection steps but rather flows into an SQL database for further mining and analyses

Conclusion
Background
Results and discussion
Casadevall A: Antibody-Mediated Immunity against Intracellular Pathogens
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.