Abstract

The bladder and other pelvic viscera are innervated in the rat by the major pelvic ganglion (MPG), a mixed sympathetic/parasympathetic population of neurons that participates in lower urinary pathophysiology. Neurons from the MPG of adult females were removed, dissociated and cultured in order to test retention of the neuronal phenotype and whether they responded to Nerve Growth Factor (NGF). The bladder-specific subset of MPG neurons were distinguished by retrograde labeling prior to culture. The adult ganglionic neurons adapted to culture with > 80% survival in the best cases. The cultured neurons retained excitability, as determined by measuring voltage-activated ionic currents. They were positive for neuron-specific β-tubulin and many retained immunoreactivity for characteristic peptides and transmitter synthetic enzyme. The proportion of neurons in the different categories tested varied somewhat from that in vivo, but there was no evidence of selective death of a particular population. The cultured MPG neurons were responsive to NGF and anti-NGF antibody. NGF supported neuronal survival and expression of tyrosine hydroxylase. Added NGF also affected the expression of neuropeptide Y. Hypertrophied neurons from animals with experimental bladder outlet obstruction demonstrated increased responsiveness to NGF. The data suggest that NGF participates in adult neural plasticity due to continued responsiveness to the factor. Furthermore, questions concerning regulation of MPG neurons may be addressed in vitro.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.