Abstract

Previous studies showed that nerve growth factor (NGF) decreases the proliferation of neuroectodermal tumor (NET) cells (C-1300 and Neuro2A murine neuroblastoma, PC12 rat pheochromocytoma) within 5-7 days in a dose-dependent manner. This effect is regulated by the concentration of serum in the culture medium. Therefore, we hypothesized that NGF exerts its antimitogenic activities by interfering with the proliferative action of other growth factors. We studied the effects of short-term vs. long-term as well as endogenous vs. exogenous NGF on NET cell proliferation in response to various mitogenic growth factors. Retrovirus-mediated transfer of the beta-NGF gene into NET cells activated TrkA and consistently decreased their proliferative responses to insulin-like growth factor (IGF)-I, IGF-II, fibroblast growth factor-2, and epidermal growth factor (EGF), down-regulating EGF and IGF-I binding sites. It also decreased tyrosine phosphorylation of ERK-1, STAT3, and EGF or IGF receptors after treatment with IGF-I or EGF. Long-term incubation of NET cells with NGF mimicked the responses induced by beta-NGF gene transfer, albeit in a reversible manner. Short-term NGF treatment augmented the proliferative responses to IGF-I or EGF by enhancing cell survival. It also increased tyrosine phosphorylation of signal transducing proteins after exposure to IGF or EGF, an effect opposite to that of long-term NGF treatments. Hence, long-term NGF exposure in vitro might better reproduce the effects of NGF in vivo than short-term treatments. Only long-term exposure to NGF decreased the responses of NET cells to mitogenic growth factors by down-regulating their receptors and attenuating signal transduction events required for cell proliferation. These results suggest that NGF could exert similar actions on cellular responses to growth factors in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.