Abstract
The potential risk of arsenic-related neurodegeneration has been a growing concern. Arsenic exposure has been reported to disrupt neurite growth and neuron body integrity in vitro; however, its underlying mechanism remains unclear. Previously, we showed that arsenic sulfide (AS) exerted cytotoxicity in gastric and colon cancer cells through regulating nuclear factor of the activated T cells (NFAT) pathway. The NFAT pathway regulates axon path finding and neural development. Using neural crest cell line PC12 cells as a model, here we show that AS caused mitochondrial membrane potential collapse, reactive oxygen species production, and cytochrome c release, leading to mitochondria-mediated apoptosis via the AKT/GSK-3β/NFAT pathway. Increased glycogen synthase kinase-3 beta (GSK-3β) activation leads to the inactivation of NFAT and its antiapoptotic effects. Through inhibiting GSK-3β activity, both nerve growth factor (NGF) and Tideglusib, a GSK-3β inhibitor partially rescued the PC12 cells from the AS-induced cytotoxicity and restored the expression of NFATc3. In addition, overexpression of NFATc3 stimulated neurite outgrowth and potentiated the effect of NGF on promoting the neurite outgrowth. Collectively, our results show that NFATc3 serves as the downstream target of NGF and plays a key role in preventing AS-induced neurotoxicity through regulating the AKT/GSK-3β/NFAT pathway in PC12 cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.