Abstract

Rat pheochromocytoma (PC12) cells grown in the presence or absence of nerve growth factor (NGF) were pulse-labeled with [35S]methionine or 32Pi, and neurofilament subunits were recovered by immunoprecipitation from cellular extracts. The neurofilament subunits, with apparent molecular masses on sodium dodecyl sulfate-polyacrylamide gels of 68 kDa (light, L), 145 kDa (medium, M), and 200 kDa (heavy, H), were all found to be expressed in PC12 cells grown in the absence and presence of NGF. H was expressed at very low levels and in a form that migrated more rapidly on sodium dodecyl sulfate gels than H from rat brain. M was synthesized as a more rapidly migrating precursor that underwent modification within 3 h after labeling to a slower migrating form that co-migrated with M from rat brain. Analysis of the different M species by two-dimensional gel electrophoresis indicated that they also had different isoelectric points consistent with differences in phosphate content. NGF treatment resulted in increased L synthesis and, to a lesser degree, M synthesis, but had no effect on H synthesis. NGF also increased the stability of the modified form of M. All three subunits were 32P-labeled, and NGF increased the incorporation of 32P into M and H. Neurofilament subunits were also immunoprecipitated from a soluble fraction of [35S]methionine-labeled PC12 cells. This soluble pool of subunits differed from the cytoskeleton-associated pool in the relative proportions of individual subunits, M being the predominant form in the former and L in the latter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call