Abstract

Axonal damage can induce a variety of changes in the cell bodies of neurons and in neighboring cells. Such changes, termed the axon reaction, can include neuronal chromatolysis, synaptic disconnection, and altered protein synthesis. Nerve growth factor (NGF) treatment of sympathetic ganglia after nerve damage has been reported to block partially both chromatolysis and synaptic disconnection. We examined the proteins synthesized in rat superior cervical ganglia using two-dimensional polyacrylamide gel electrophoresis. Axotomy induces changes in the relative rates of synthesis of a number of the proteins. The NGF treatment after axotomy does not reverse most of these, and induces other changes. It thus appears that the absence of NFG in retrograde transport from target tissues cannot alone be the signal for the axon reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.