Abstract

Conventional uptake of neurotrophins takes place at axon terminals via specific receptors, and is followed by retrograde transport. Recent studies demonstrated that, with the exception of nerve growth factor, other neurotrophins may be delivered anterogradely to the region containing the receptor expressing neurons. In this study we used a triple labeling method that combines retrograde tract tracing, in situ hybridization and immunocytochemistry to examine whether non-principal cells projecting from the hippocampus to the septum synthesize nerve growth factor. Our results show that, on average, 59% of the horseradish peroxidase-labeled hippocamposeptal nonpyramidal neurons also display nerve growth factor messenger RNA hybridization signal. The ratio was slightly higher in the CA1 stratum oriens and the hilus of the dentate gyrus (64 and 62%, respectively) compared to stratum oriens of the CA3 region (58%). In addition, we demonstrated that many nerve growth factor-positive septally projecting neurons also contain the calcium-binding protein calbindin d-28K, whereas nerve growth factor-negative projecting cells mostly lack this neurochemical marker. In contrast to nerve growth factor, neurotrophin-3 has never been found in hippocamposeptal cells. Hippocamposeptal GABAergic cells are reciprocally connected with the medial septum, thus they are in a key position to regulate nerve growth factor release as a function of the activity level in the septohippocampal system. Furthermore, our results raise the intriguing possibility that nerve growth factor may be transported also in an anterograde manner. Regardless of the direction of transport, the presence of nerve growth factor in hippocamposeptal cells suggests that long distance fast synaptic mechanisms and slow neurotrophin action are coupled in these neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call