Abstract

In the treatment of reduced bladder capacity, matrix grafts have been used as a scaffold into which cell elements from the native bladder grow, eventually forming a new bladder segment. Functioning motor nerve endings in such segments in the rat have been demonstrated, although little is known about nerve distribution. We compare the pattern of nerve distribution in scaffold-augmented rat bladders with that in bladders regrown after subtotal cystectomy and that in control bladders. Female Sprague-Dawley rats were either subtotally cystectomized (n=7) or had a part of the bladder dome replaced by an acellular collagen (small intestinal submucosa) matrix graft (n=10). Fourteen age-matched, unoperated animals were used as controls. Two and a half to 10 months after surgery the bladders were stained for acetylcholinesterase and studied in wholemounts. No ganglion neurons were observed in any of the bladders. On their ventral side the control bladders showed longitudinal nerve trunks, running in parallel along the longitudinally oriented muscle bundles, while on the lateral and dorsal aspects the nerves were thinner, more irregularly arranged and frequently branched. In the bladders regrown after subtotal cystectomy, the ventral nerves were seen running obliquely to the still longitudinally oriented muscle bundles, resembling the pattern of the normal bladder base; the pattern of the dorsolateral nerves was the same as that in the controls. In the matrix bladders, the muscle and nerve patterns in the native part were the same as those in controls. Muscle bundles were growing into the matrix, accompanied by nerves, which showed limited branching when entering the matrix, usually running in parallel to the muscle, but then branching within the matrix. The nerves in the matrix grafts and the regrown parts of the subtotally cystectomized bladders derive from preexisting nerves in the bladder. In neither case does the nerve trunk or muscle bundle arrangement fully attain the pattern found in normal bladders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call