Abstract

BackgroundMajor trauma to the spinal cord or upper extremity often results in severe sensory and motor disturbances from injuries to the brachial plexus and its insertion into the spinal cord. Functional restoration with nerve grafting neurotization and tendon transfers is the mainstay of treatment. Results may be incomplete due to a limited supply of autologous material for nerve grafts. The factors deemed most integral for success are early surgical intervention, reconstruction of all levels of injury, and maximization of the number of axonal conduits per nerve repair.ObjectiveTo report the second series of nerve allograft transplantation using cadaveric nerve graft and our experience with living-related nerve transplants.ParticipantsEight patients, seven men and one woman, average age 23 years (range 18–34), with multi-level brachial plexus injuries were selected for transplantation using either cadaveric allografts or living-related donors.MethodsGrafts were harvested and preserved in the University of Wisconsin Cold Storage Solution at 5°C for up to 7 days. The immunosuppressive protocol was initiated at the time of surgery and was discontinued at approximately 1 year, or when signs of regeneration were evident. Parameters for assessment included mechanism of injury, interval between injury and treatment, level(s) of deficit, post-operative return of function, pain relief, need for revision surgery, complications, and improvement in quality of life.ResultsSurgery was performed using living-related donor grafts in six patients, and cadaveric grafts in two patients. Immunosuppression was tolerated for the duration of treatment in all but one patient in whom early termination occurred due to non-compliance. There were no cases of graft rejection as of most recent follow-up. Seven patients showed signs of regeneration, demonstrated by return of sensory and motor function and/or a migrating Tinel's sign. One patient was non-compliant with the post-operative regimen and experienced minimal return of function despite a reduction in pain.ConclusionsDespite the small number of subjects, it appears that nerve allograft transplantation may be performed safely, permitting non-prioritized repair of long-segment peripheral nerve defects and maximizing the number of axonal conduits per nerve repair. For patients with long, multi-level brachial plexus injuries or combined upper and lower extremity nerve deficits, the use of nerve allograft allows a more complete repair that may translate into greater functional restoration than autografting alone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.