Abstract

We find the low-temperature behavior of the Casimir-Polder free energy for a polarizable and magnetizable atom interacting with a plate made of ferromagnetic dielectric material. It is shown that the corresponding Casimir-Polder entropy goes to zero with vanishing temperature, i.e., the Nernst heat theorem is satisfied, if the dc conductivity of the plate material is disregarded in calculations. If the dc conductivity is taken into account, the Nernst theorem is violated. These results are discussed in light of recent experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call