Abstract
The discovery of two-dimensional (2D) ferromagnets and antiferromagnets with topologically nontrivial electronic band structures makes the study of the Nernst effect in 2D materials of great importance and interest. To measure the Nernst coefficient of 2D materials, the detection of the temperature gradient is crucial. Although the micro-fabricated metal wires provide a simple but accurate way for temperature detection, a linear-response assumption that the temperature gradient is a constant is still necessary and has been widely used to evaluate the temperature gradient. However, with the existence of substrates, this assumption cannot be precise. In this study, we clearly show that the temperature gradient strongly depends on the distance from the heater by both thermoelectric transport and thermoreflectance measurements. Fortunately, both measurements show that the temperature gradient can be well described by a linear function of the distance from the heater. This linearity is further confirmed by comparing the measured Nernst coefficient to the value calculated from the generalized Mott’s formula. Our results demonstrate a precise way to measure the Nernst coefficient of 2D materials and would be helpful for future studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.