Abstract

Trastuzumab has been shown to improve the survival outcomes of HER2 positive breast cancer patients. However, a significant proportion of HER2-positive patients are either inherently resistant or develop resistance to trastuzumab. We assessed the effects of neratinib, an irreversible panHER inhibitor, in a panel of 36 breast cancer cell lines. We further assessed its effects with or without trastuzumab in several sensitive and resistant breast cancer cells as well as a BT474 xenograft model. We confirmed that neratinib was significantly more active in HER2-amplified than HER2 non-amplified cell lines. Neratinib decreased the activation of the 4 HER receptors and inhibited downstream pathways. However, HER3 and Akt were reactivated at 24 hours, which was prevented by the combination of trastuzumab and neratinib. Neratinib also decreased pHER2 and pHER3 in acquired trastuzumab resistant cells. Neratinib in combination with trastuzumab had a greater growth inhibitory effect than either drug alone in 4 HER2 positive cell lines. Furthermore, trastuzumab in combination with neratinib was growth inhibitory in SKBR3 and BT474 cells which had acquired resistance to trastuzumab as well as in a BT474 xenograft model. Innately trastuzumab resistant cell lines showed sensitivity to neratinib, but the combination did not enhance response compared to neratinib alone. Levels of HER2 and phospho-HER2 showed a direct correlation with sensitivity to neratinib. Our data indicate that neratinib is an effective anti-HER2 therapy and counteracted both innate and acquired trastuzumab resistance in HER2 positive breast cancer. Our results suggest that combined treatment with trastuzumab and neratinib is likely to be more effective than either treatment alone for both trastuzumab-sensitive breast cancer as well as HER2-positive tumors with acquired resistance to trastuzumab.

Highlights

  • Since we have previously shown that trastuzumabinduced activation of all HER receptors may contribute to trastuzumab resistance [19], we assessed the effects of neratinib, to determine if it can improve response and overcome resistance to trastuzumab, in sensitive and resistant HER2 amplified breast cancer cells

  • Based on the additive interaction between neratinib and trastuzumab observed in the SKBR3 and BT474 cell lines, we extended the analysis of the combination treatment to 7 additional HER2 amplified breast cancer cell lines, including cell line models of innate trastuzumab resistance

  • Our results showed that the combination of trastuzumab and neratinib treatment was significantly more potent at reducing cell viability than trastuzumab alone in both sensitive and acquired resistant HER2 over-expressing SKBR3 and BT474 breast cancer cells

Read more

Summary

Introduction

Since we have previously shown that trastuzumabinduced activation of all HER receptors may contribute to trastuzumab resistance [19], we assessed the effects of neratinib, to determine if it can improve response and overcome resistance to trastuzumab, in sensitive and resistant HER2 amplified breast cancer cells. The results suggest that neratinib effectively inhibits HER2 activation and downstream signaling in HER2 positive breast cell lines.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call