Abstract

Abstract Separation of neptunium by solvent extraction has been based on tributylphosphate (TBP) for decades, but TBP is not fully incinerable, which adds to the burden of long-lived radioactive waste. Alternatives to TBP for uranium and plutonium extraction, such as the N,N-diakylamides, previously have been explored in the hopes of transitioning to an extractant that is incinerable. Four N,N-diakylamides, N,N-dihexylhexanamide (DHHA), N,N-dihexyloctanamide (DHOA), N,N-di(2-ethylhexyl)butanamide (DEHBA), and N,N-di(2-ethylhexyl)-iso-butanamide (DEHiBA) were considered in this work for their potential to extract millimolar concentrations of Np(IV), Np(V), and Np(VI) from nitric acid solutions into organic solutions containing 1 M extractant in Exxsol D60. Under these conditions the branching of the alkyl substituents affects the extractability of Np(VI) and Np(IV), causing three of the dialkylamides, DHHA, DHOA and DEHBA, to extract neptunium in the expected order Np(VI) > Np(IV) > > Np(V). In contrast, branched DEHiBA is so poor an extractant for Np(IV) that the extraction order becomes Np(VI) > > Np(V) > Np(IV) between 0.1 and 5.6 M HNO3 due to partial oxidation of the Np(V) in nitric acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.