Abstract
We study Neptune's smooth radio emission in two ways: we simulate the observations and we then consider the radio effects of Neptune's magnetic multipoles. A procedure to deduce the characteristics of radio sources observed by the Planetary Radio Astronomy experiment minimizes limiting assumptions and maximizes use of the data, including quantitative measurement of circular polarization. Study of specific sources simulates time variation of intensity and apparent polarization of their integrated emission over an extended time period. The method is applied to Neptune smooth recurrent emission (SRE). Time series are modeled with both broad and beamed emission patterns, and at two frequencies which exhibit different time variation of polarization. These dipole‐based results are overturned by consideration of more complex models of Neptune's magnetic field. Any smooth emission from the anticipated auroral radio source is weak and briefly observed. Dominant SRE originates in complex fields at midlatitude. Possible SRE source locations overlap that of “high‐latitude” emission (HLE) between +(out) and −(in) quadrupoles. This is the first identification of multipolar magnetic structure with a major source of planetary radio emission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.