Abstract
We examined the substrate specificity of the carboxydipeptidase activity of neprilysin (NEP) using fluorescence resonance energy transfer (FRET) peptides containing ortho-aminobenzoyl (Abz) and 2,4-dinitrophenyl (Dnp) as a donor/acceptor pair. Two peptide series with general sequences Abz-RXFK(Dnp)-OH and Abz-XRFK(Dnp)-OH (X denotes the position of the altered amino acid) were synthesized to study P1 (cleavage at the X-F bond) and P2 (cleavage at R-F bond) specificity, respectively. In these peptides a Phe residue was fixed in P1' to fulfill the well-known NEP S1' site requirement for a hydrophobic amino acid. In addition, we explored NEP capability to hydrolyze bradykinin (RPPGFSPFR) and its fluorescent derivative Abz-RPPGFSPFRQ-EDDnp (EDDnp=2,4-dinitrophenyl ethylenediamine). The enzyme acts upon bradykinin mainly as a carboxydipeptidase, preferentially cleaving Pro-Phe over the Gly-Phe bond in a 9:1 ratio, whereas Abz-RPPGFSPFRQ-EDDnp was hydrolyzed at the same bonds but at an inverted proportion of 1:9. The results show very efficient interaction of the substrates' C-terminal free carboxyl group with site S2' of NEP, confirming the enzyme's preference to act as carboxydipeptidase at substrates with a free carboxyl-terminus. Using data gathered from our study, we developed sensitive and selective NEP substrates that permit continuous measurement of the enzyme activity, even in crude tissue extracts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.