Abstract

Drug-induced nephrotoxicity represents an important cause of acute kidney injury with associated patient morbidity and mortality and is often responsible for termination of drug development, after extensive resource allocation. We have developed a human kidney tubuloid system that phenocopies, in 3D culture, kidney proximal tubules, a primary injury site of most nephrotoxicants. Traditional end point assays are often performed on 2D cultures of cells that have lost their differentiated phenotype. Herein, we pair a tubuloid system with Nanoflare (NF) mRNA nanosensors to achieve a facile, real-time assessment of drug nephrotoxicity. Using kidney injury molecule-1 (KIM-1) mRNA as a model injury biomarker, we verify NF specificity in engineered and adenovirus-transfected cells and confirm their efficacy to report tubular cell injury by aristolochic acid and cisplatin. The system also facilitates nephrotoxicity screening as demonstrated with 10 representative anticancer moieties. 5-Fluorouracil and paclitaxel induce acute tubular injury, as reflected by an NF signal increase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call