Abstract

BackgroundStudies have demonstrated that the failure of oligodendrocyte precursor cells (OPCs) differentiation as a major cause of remyelination failure in demyelinating disease. The reasons for this failure are not completely understood. We hypothesized that the present of myelin debris in CNS play an important role in poor OPCs differentiation in the mouse model of demyelinating disease. MethodsMice were fed by the food mixed with normal or 0.2 % cuprizone (CPZ) for 6 weeks. Then the learning and memory impairment were tested by Morris water maze test. The spontaneous alternation behavior and depression-like symptoms were assessed by tail suspension test and open filed test. The number of OPCs and oligodendrocytes were counted by immunofluorescence. After exposed to CPZ for 6 weeks, the mice were then receiving stereotactic injection of NEP1-40 into the CA3 of hippocampus. The behavioral, learning and memory changes were assessed by tail suspension test and open field test. The differentiation of OPCs were detected by immunofluorescence and western blot. ResultsThe mice in CPZ group are more likely to show signs of depression and they showed impairment of long-term learning and memory function. The differentiation of OPCs were impaired in CPZ group. We found that mice treated with NEP1-40 showed less depression-like symptom in TST and higher locomotor activity in the OFT than the mice treated with PBS. ConclusionsOur study suggest that NEP1-40 can promote OPC differentiation and survival. Further study should focus on the effect of NEP1-40 on the differentiation and survival of OPCs in vitro.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call