Abstract

The Klodzko Metamorphic Complex (KMC) in the Central Sudetes consists of meta-sedimentary and meta-igneous rocks metamorphosed under greenschist to amphibolite facies conditions. They are comprised in a number of separate tectonic units interpreted as thrust sheets. In contrast to other Lower Palaeozoic volcano-sedimentary successions in the Sudetes, the two uppermost units (the Orla-Gologlowy unit and the Klodzko Fortress unit) of the KMC contain meta-igneous rocks with supra-subduction zone affinities. The age of the KMC was previously assumed to be Early Palaeozoic–Devonian, based on biostratigraphic findings in the lowermost tectonic unit. Our geochronological study focused on the magmatic rocks from the two uppermost tectonic units, exposed in the SW part of the KMC. Two orthogneiss samples from the Orla-Gologlowy unit yielded ages of 500.4±3.1 and 500.2±4.9 Ma, interpreted to indicate the crystallization age of the granitic precursors. A plagioclase gneiss from the same tectonic unit, intimately interlayered with metagabbro, provided an upper intercept age of 590.1±7.2 Ma, which is interpreted as the time of igneous crystallization. From the topmost Klodzko Fortress unit, a metatuffite was studied, which contains a mixture of genetically different zircon grains. The youngest 207Pb/206Pb ages, which cluster at ca. 590-600 Ma, are interpreted to indicate the maximum depositional age for this metasediment. The results of this study are in accord with a model that suggests a nappe structure for the KMC, with a Middle Devonian succession at the base and Upper Proterozoic units at structurally higher levels. It is suggested here that the KMC represents a composite tectonic suture that juxtaposes elements of pre-Variscan basement, intruded by the Lower Ordovician granite, against a Middle Palaeozoic passive margin succession. The new ages, combined with the overall geochemical variation in the KMC, indicate the existence of rock assemblages representing a Gondwana active margin. The recognition of Neoproterozoic subduction-related magmatism provides additional arguments for the hypothesis that equivalents of the Tepla-Barrandian domain are exposed in the Central Sudetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.