Abstract

Doxorubicin, a member of the anthracycline family, is a widely prescribed anticancer chemotherapy drug. Unfortunately, cumulative doses of doxorubicin can cause mitochondrial dysfunction, leading to acute or chronic cardiotoxicity. This study demonstrated that Neopetroside-B (NPS-B) protects cardiomyocytes in the presence of doxorubicin. NPS-B improved mitochondrial function in cardiomyocytes by increasing ATP production and oxygen consumption rates. On the other hand, NPS-B negatively influenced cancer cell lines by increasing reactive oxygen species. We analyzed NPS-B-influenced metabolites (VIP > 1.0; AUC>0.7; p < 0.05) and proteins (FC > 2.0) and constructed metabolite-protein enrichment, which showed that NPS-B affected uracil metabolism and NAD-binding proteins (e.g., aldehyde dehydrogenase and glutathione reductase) in cardiomyocytes. However, for the cancer cells, NPS-B decreased the NAD+/NADH balance, impairing cell viability. In a xenograft mouse model treated with doxorubicin, NPS-B reduced cardiac fibrosis and improved cardiac function. NPS-B may be a beneficial intervention to reducing doxorubicin-induced cardiotoxicity with anticancer effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call