Abstract

Due to concerns over negative impacts on insect pollinators, the European Union has implemented a moratorium on the use of three neonicotinoid pesticide seed dressings for mass-flowering crops. We assessed the effectiveness of this policy in reducing the exposure risk to honeybees by collecting 130 samples of honey from bee keepers across the UK before (2014: N = 21) and after the moratorium was in effect (2015: N = 109). Neonicotinoids were present in about half of the honey samples taken before the moratorium, and they were present in over a fifth of honey samples following the moratorium. Clothianidin was the most frequently detected neonicotinoid. Neonicotinoid concentrations declined from May to September in the year following the ban. However, the majority of post-moratorium neonicotinoid residues were from honey harvested early in the year, coinciding with oilseed rape flowering. Neonicotinoid concentrations were correlated with the area of oilseed rape surrounding the hive location. These results suggest mass flowering crops may contain neonicotinoid residues where they have been grown on soils contaminated by previously seed treated crops. This may include winter seed treatments applied to cereals that are currently exempt from EU restrictions. Although concentrations of neonicotinoids were low (<2.0 ng g-1), and posed no risk to human health, they may represent a continued risk to honeybees through long-term chronic exposure.

Highlights

  • Neonicotinoid pesticides are the most widely used class of insecticides and account for around one third of the worldwide market [1]

  • The likelihood of honey containing neonicotinoid residues was higher before the moratorium than after it, with 52.3% of samples from 2014 containing residues of either clothianidin, thiamethoxam or imidacloprid, compared to the 22.9% in 2015 (Tables 1 & 2; Fig 2)

  • The results of this national survey suggests that the European Union (EU) moratorium on neonicotinoid use for mass-flowering crops have been only partially effective in reducing exposure risk to bees

Read more

Summary

Introduction

Neonicotinoid pesticides are the most widely used class of insecticides and account for around one third of the worldwide market [1] They are most commonly applied as prophylactic seed coatings on a wide variety of flowering (e.g. oilseed rape and sunflower) and non-flowering (e.g. wheat and maize) crops [2, 3]. Their systemic expression in the tissues of plants provides targeted protection against herbivorous pests, including those that show resistance to previously developed pesticides, such as pyrethroids [2, 3]. Neonicotinoid residues in honey design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.