Abstract

Neonicotinoid insecticides can cause a variety of adverse sub-lethal effects in bees. In social species such as the honeybee, Apis mellifera, queens are essential for reproduction and colony functioning. Therefore, any negative effect of these agricultural chemicals on the mating success of queens may have serious consequences for the fitness of the entire colony. Queens were exposed to the common neonicotinoid pesticides thiamethoxam and clothianidin during their developmental stage. After mating, their spermathecae were dissected to count the number of stored spermatozoa. Furthermore, their worker offspring were genotyped with DNA microsatellites to determine the number of matings and the genotypic composition of the colony. Colonies providing the male mating partners were also inferred. Both neonicotinoid and control queens mated with drones originating from the same drone source colonies, and stored similar number of spermatozoa. However, queens reared in colonies exposed to both neonicotinoids experienced fewer matings. This resulted in a reduction of the genetic diversity in their colonies (i.e. higher intracolonial relatedness). As decreased genetic diversity among worker bees is known to negatively affect colony vitality, neonicotinoids may have a cryptic effect on colony health by reducing the mating frequency of queens.

Highlights

  • Pollinating insects provide important ecosystem and economic services by foraging on wild plants and agricultural crops [1]

  • Given that factors affecting queen mating can affect colony productivity [38,39,40], and because reduced queen health, possibly because of poor mating, is frequently cited as a major cause for colony death [50], we studied the effects of field-realistic concentrations of the combination of two neonicotinoids, thiamethoxam and clothianidin, on queen mating and genetic diversity among worker offspring

  • The non-detection error for not discriminating between the genotypes of two siring drones because they share the same genotype by chance was NDE < 0.007 (2.18 drones), providing confidence in our data set (S1 Table)

Read more

Summary

Introduction

Pollinating insects provide important ecosystem and economic services by foraging on wild plants and agricultural crops [1]. Recent reports about the decline of wild pollinators, and high annual mortality of managed honeybees, have raised concerns for food security and the maintenance of biodiversity [1]. Climate change, pests and pathogens, alien species, and agrochemicals have been listed as potential causes of these losses [2,3]. Neonicotinoids are neurotoxic insecticides that are ubiquitously employed in agriculture for pest control. The widespread use of such neurotoxic insecticides results in residual accumulation of low concentrations in the environment [4,5].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call