Abstract
Background: Resuscitation of infants using T-piece resuscitators (TPR) allow positive pressure ventilation with positive end-expiratory pressure (PEEP). The adjustable PEEP valve adds resistance to expiration and could contribute to inadvertent PEEP. The study indirectly investigated risk of inadvertent peep by determining expiratory time constants. The aim was to measure system expiratory time constants for a TPR device in a passive mechanical model with infant lung properties.Methods: We used adiabatic bottles to generate four levels of compliance (0.5–3.4 mL/cm H2O). Expiratory time constants were recorded for combinations of fresh gas flow (8, 10, 15 L/min), PEEP (5, 8, 10 cm H2O), airway resistance (50, 200 cm H2O/L/sec and none), endotracheal tube (none, size 2.5, 3.0, 3.5) with a peak inflation pressure of 15 cm H2O above PEEP.Results: Low compliances resulted in time constants below 0.17 s contrasting to higher compliances where the expiratory time constants were 0.25–0.81 s. Time constants increased with increased resistance, lower fresh gas flows, higher set PEEP levels and with an added airway resistance or endotracheal tube.Conclusions: The risk of inadvertent PEEP increases with a shorter time for expiration in combination with a higher compliance or resistance. The TPR resistance can be reduced by increasing the fresh gas flow or reducing PEEP. The expiratory time constants indicate that this may be clinically important. The risk of inadvertent PEEP would be highest in intubated term infants with highly compliant lungs. These results are useful for interpreting clinical events and recordings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.