Abstract

In the rat, ovarian follicle-stimulating hormone (FSH) receptors increase markedly during the first two postnatal weeks, when serum gonadotropin levels are most elevated. This study was conducted to evaluate the hypothesis that these high gonadotropin levels, and in particular FSH, are involved in the acquisition of FSH receptors by the developing ovary. Gonadotropin release was suppressed by administration of several non-aromatizable androgens, among which dihydrotestosterone propionate (DHTP) was the most effective. In one series of experiments the steroids were administered from Days 5 to 11, and serum FSH and luteinizing hormone (LH) were measured on Day 12. Surprisingly, FSH receptor content was greater in rats with suppressed serum gonadotropins than in controls. The greatest increase in available receptors was observed in DHTP-treated rats in which serum FSH was reduced to 20% of control values and LH suppressed to undetectable values. DHTP failed to directly increase available FSH receptors in hypophysectomized immature rats. Magnesium chloride (MgCl2) treatment of ovarian membranes removed bound 125I-hFSH by 87% without affecting receptor viability. Exposure of control 12-day-old ovaries to MgCl2 increased available FSH receptors to a level similar to that of ovaries from DHTP-treated rats not exposed to MgCl2, suggesting that more receptors were available in DHTP-treated rats because serum FSH was suppressed. Earlier initation of DHTP treatment (postnatal Day 1) suppressed serum FSH and LH to undetectable values by Day 5 and decreased FSH receptor content below control values by Day 12. MgCl2 treatment only slightly increased available receptors in these DHTP-treated animals.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.