Abstract

Neonatal treatment with monosodium glutamate causes profound deficits in place learning and memory in adult rats evaluated in the Morris maze. Theta activity has been related to hippocampal learning, and increased high-frequency theta activity occurs through efficient place learning training in the Morris maze. We wondered whether the place learning deficits observed in adult rats that had been neonatally treated with monosodium glutamate (MSG), were related to altered theta patterns in the hippocampus and prelimbic cortex, which were recorded during place learning training in the Morris maze. The MSG-treated group had a profound deficit in place learning ability, with a marginal reduction in escape latencies during the final days of training. Learning-related changes were observed in the relative power distribution in control and MSG-treated groups in the hippocampal EEG, but not in the prelimbic cortex. Increased prefrontal and reduced hippocampal absolute power that appeared principally during the final days of training, and reduced coherence between regions throughout the training (4–12 Hz), were observed in the MSG-treated rats, thereby suggesting a misfunction of the circuits rather than a hyperexcitable general state. In conclusion, neonatal administration of MSG, which caused a profound deficit in place learning at the adult age, also altered the theta pattern both in the hippocampus and prelimbic cortex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.