Abstract
Infantile malignant osteopetrosis (IMO) is a rare autosomal recessive disorder affecting osteoclast function. Fifty percent of the patients have a mutation in the TCIRG1 gene coding for one subunit of an osteoclast proton pump. The only curative treatment is hematopoietic stem cell transplantation (SCT). The oc/oc mouse has a mutation in the gene homologous to TCIRG1 and its expected lifespan is only 3 to 4 weeks. Previous attempts to cure these mice with SCT have been unsuccessful. We wanted to determine if early hematopoietic SCT using enriched and MHC-matched stem cells can cure oc/oc mice from osteopetrosis. One- and 8-day-old oc/oc and control mice were radiated with 200, 400, or 600 cGy and transplanted intraperitoneally with 1 or 5 x 10(6) normal lineage-depleted bone marrow cells. Blood, x-ray, and pathology analyses were performed on transplanted mice. All 1-day-old mice irradiated with 400 cGy and transplanted with 5 x 10(6) cells survived long term. An engraftment level of 20% is sufficient to correct most features of the disease. X-ray and histopathology examination of transplanted animals showed normalization of bone structure. However, although a correction of bone structure occurred, the transplanted oc/oc mice were smaller in size than their littermates. In contrast to untreated animals, oc/oc mice developed teeth after transplantation, but with abnormal structure and shape making them unusable. We have shown that this murine form of IMO is curable with neonatal SCT using enriched stem cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.