Abstract

Brain metabolite concentrations change dynamically throughout development, especially during early childhood. The purpose of this study was to investigate the brain metabolite concentrations of neonates (postconceptional age (PCA): 30 to 43 weeks) using single-voxel magnetic resonance spectroscopy (MRS) and to discuss the relationships between the changes in the concentrations of such metabolites and brain development during the neonatal period. A total of 83 neonatal subjects were included using the following criteria: the neonates had to be free of radiological abnormalities, organic illness, and neurological symptoms; the MR spectra had to have signal-to-noise ratios ≥ 4; and the estimated metabolite concentrations had to display Cramér-Rao lower bounds of ≤ 30%. MRS data (echo time/repetition time, 30/5000 ms; 3T) were acquired from the basal ganglia (BG), centrum semiovale (CS), and the cerebellum. The concentrations of five metabolites were measured: creatine, choline, N-acetylaspartate, myo-inositol, and glutamate/glutamine complex (Glx). One hundred and eighty-four MR spectra were obtained (83 BG, 77 CS, and 24 cerebellum spectra). Creatine, N-acetylaspartate, and Glx displayed increases in their concentrations with PCA. Choline was not correlated with PCA in any region. As for myo-inositol, its concentration decreased with PCA in the BG, whereas it increased with PCA in the cerebellum. Quantitative brain metabolite concentrations and their changes during the neonatal period were assessed. Although the observed changes were partly similar to those detected in previous reports, our results are with more subjects (n = 83), and higher magnetic field (3T). The metabolite concentrations examined in this study and their changes are clinically useful indices of neonatal brain development.

Highlights

  • In vivo magnetic resonance spectroscopy (MRS) of the brain can provide information about the concentrations of particular metabolites and changes in their levels, which can aid the early detection of abnormalities, e.g., in cases of acute neonatal brain injury in which diffusion imaging and conventional MR imaging (MRI) are negative [1]

  • We focus on neonatal brain metabolite concentrations and their changes by the development

  • There were no significant differences in the concentrations between the sexes (ANCOVA)

Read more

Summary

Introduction

In vivo magnetic resonance spectroscopy (MRS) of the brain can provide information about the concentrations of particular metabolites and changes in their levels, which can aid the early detection of abnormalities, e.g., in cases of acute neonatal brain injury in which diffusion imaging and conventional MR imaging (MRI) are negative [1]. The changes in the concentrations of brain metabolites throughout development have been extensively studied using MRS, and the concentrations of some metabolites have been found to exhibit dynamic changes during the early stages of life [1,2,3,4,5,6,7,8,9,10,11,12,13]. In children, it is necessary for detail classification of the metabolite concentrations depending on age. Neonatal subjects (postconceptional age (PCA): 30 to 43 weeks) with no radiological abnormalities, organic illnesses, or neurological symptoms were selected for this study

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call