Abstract

PurposeTο fabricate a tissue-mimicking phantom simulating the MR relaxation times of neonatal gray and white matter at 1.5 T, for the optimization of clinical Τ1 weighted (T1w) and T2 weighted (T2w) sequences. MethodsNumerous agarose gel solutions, doped with paramagnetic Gadopentetic acid (Gd-DTPA) ions, underwent quantitative relaxometry with a Turbo-Inversion-Recovery Spin-Echo (TIRSE) sequence and a Car-Purcell-Meiboom-Gill (CPMG) sequence for T1 and T2 measurements, respectively. Twenty samples which simulated the spectrum of relaxation times of neonatal brain parenchyma were selected. Reproducibility was tested by refabrication and relaxometry of the relevant samples while stability was tested by six sets of quantitative relaxometry scans during a 12-month period. Results“Neonatal gray matter equivalent”(0.6%w/v agarose-0.10 mM Gd-DTPA), accurately mimicked relaxation times of neonatal gray matter: T1 = (1134 ± 7)ms, T2 = (200 ± 7)ms. “Neonatal white matter equivalent”(0.3%w/v agarose-0.03 mM Gd-DTPA), accurately mimicked relaxation times of neonatal white matter: T1 = (1654 ± 9)ms, T2 = (376 ± 4)ms. Coefficient of variation of T1 and T2 relaxation times measurements remained less than 5% during 12 months. Sequences were modified according to maximum relative contrast (RC) between neonatal gray and white matter equivalents. Optimized T2wTSE and T1wTSE parameters were TR/TE = 9500 ms/280 ms and TR/TE = 1200 ms/10 ms, respectively for a MAGNETOM Vision/Sonata Hybrid 1.5 T system. Quantitative relaxometry at different 1.5 T MR systems resulted in inter-system T1, T2 measurement deviations of 12% and 3%, respectively. ConclusionA precise, stable and reproducible phantom for the neonatal brain was fabricated. Subsequent optimization of clinical T1w and T2w sequences based on maximum RC between neonatal gray and white matter equivalents was scientifically supported with robust relaxometry. The procedure was applicable in different 1.5 T systems. HighlightTR & TE optimization of neonatal brain at 1.5 T was based on relaxometry of a stable, reproducible phantom.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call