Abstract

In rats, alcohol exposure during the period of rapid brain growth produces long-term changes in the free-running period, photoentrainment and phase-shifting responses of the circadian rhythm in wheel-running behavior. To determine whether these alterations in circadian behavior are associated with permanent damage to the circadian timekeeping mechanism or reconfiguration of its molecular components, we examined the long-term effects of neonatal alcohol exposure on clock gene rhythms in the pacemaker located in the suprachiasmatic nucleus (SCN) and in other brain or peripheral tissues of adult rats. Artificially reared male rat pups were exposed to alcohol (4.5 g/kg/d) or isocaloric milk formula (gastrostomy control; GC) on postnatal days 4 to 9. At 3 months of age, animals were exposed to constant darkness and then SCN, cerebellum, and liver tissue were harvested at 6-hour intervals for subsequent analysis of Period1 (Per1), Per2, Cryptochrome1 (Cry1), Bmal1, and Rev-erbalpha mRNA levels by quantitative PCR. In the SCN, cerebellum and liver, Per1, Per2, Cry1, Bmal1, and Rev-erbalpha expression oscillated with a similar amplitude (peak-to-trough differences of 2- to 9-fold) and phase in the suckle control (SC) and GC groups. These clock gene rhythms in control animals were marked by peak expression of Per1, Per2, Cry1, and Rev-erbalpha during the subjective day and of Bmal1 during the subjective night. The EtOH group was distinguished by altered rhythms in the expression of specific clock genes within the SCN, cerebellum and liver. In EtOH-treated rats, the SCN rhythm in Cry1 expression was strongly damped and the Per2 rhythms in the cerebellum and liver were phase-advanced such that peak expression occurred during the mid-subjective day. These results demonstrate alcohol exposure during the brain growth spurt alters the circadian regulation of some molecular components of the clock mechanism in the rat SCN, cerebellum, and liver. The observed alterations in the temporal configuration of essential "gears" of the molecular clockworks may play a role in the long-term effects of neonatal alcohol exposure on the regulation of circadian behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call