Abstract
The reactivity of diatomic titanium with molecular carbon monoxide has been investigated in solid neon at very low temperature. In contrast to the spontaneous reaction observed between Ti(2) and N(2), our results show that the formation of dititanium oxycarbide (OTi(2)C) from the condensation of effusive beams of Ti and CO in neon matrices involves several intermediate steps including one metastable intermediate. In the absence of electronic excitation, only formation of a Ti(2)(CO) complex occurs spontaneously during the reaction at 9 K of ground state Ti(2) and CO, as reported in solid argon by Xu, Jiang and Tsumori (Angew. Chem. Int. Ed., 2005, 44, 4338). However, during deposition or following electronic excitation, this species rearranges into a new species: the more stable, OTi(2)C oxycarbide form. Several low-lying excited states of OTi(2)C are also observed between 0.77 and 0.89 eV above the ground state, leading to a complex sequence of interacting vibronic transitions, merging into a broad continuum above 1 eV. Observations of Ti(2)(12)C(16)O, Ti(2)(13)C(16)O and Ti(2)(12)C(18)O and natural titanium isotopic data enable the identification of four fundamental vibrations in the ground electronic state and two others in the first two excited states. Quantum chemical calculations predict an open-shell (1)A(g) ground state with Ti-C and Ti-O distances close to 184 pm, and 91 degrees for the TiCTi and TiOTi bond angles, and give fundamental frequencies in good agreement with observation. The reaction paths of the Ti(2) + N(2) --> Ti(2)N(2) and Ti(2) + CO --> Ti(2)(CO) --> OTi(2)C have been investigated and a reaction scheme is proposed accounting for the similarities in nature and properties of the final products, as well as explaining the observation of a coordination complex with Ti(2) only in the case of the carbonyl ligand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.