Abstract

In this work, Neolamarckia cadamba (cadamba), also known as bur flower tree has been exercised to demonstrate as an excellent methylene blue scavenger from simulated as well as industrial wastewater. The particle morphology and structural insights were gained from FESEM, BET surface area, FTIR, and pHZPC. The adsorption behavior was mapped by different physico-chemical parameters such as contact time, pH, input concentration, and temperature. Experimental data reveal rapid adsorption, and >90% uptake was successful within the first 15 min and reaches equilibrium by 45 min (removal efficiency = 94.15%) at neutral pH. The maximum adsorption capacity was found to be 115.60 mg/g. The uptake process follows pseudo-second-order kinetics (R2 = 0.99), confirming a chemisorption process while the Langmuir model (R2 = 0.99) satisfactorily addresses the adsorption path. Thermodynamic parameters suggest a spontaneous, feasible, and exothermic process with increased entropy. Spent adsorbent could easily be regenerated in up to 74% using 1:1 MeOH/H2O with a potential of three-cycle use. Real-time efficacy has been established with an MB containing industrial effluent and up to 44.70% adsorption, which confirms the material’s practical applicability. Statistical reliability was confirmed by the relative standard deviation. Altogether, the present material offers clean and green removal of methylene blue dye from versatile wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.