Abstract

Vascular smooth muscle cells (VSMCs) have been shown to play a role in the pathogenesis of giant cell arteritis (GCA) through their capacity to produce chemokines recruiting T cells and monocytes in the arterial wall and their ability to migrate and proliferate in the neointima where they acquire a myofibroblast (MF) phenotype, leading to vascular stenosis. This study aimed to investigate if MFs could also impact T-cell polarization.Confocal microscopy was used to analyze fresh fragments of temporal artery biopsies (TABs). Healthy TAB sections were cultured to obtain MFs, which were then treated or not with interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) and analyzed by immunofluorescence and RT-PCR. After peripheral blood mononuclear cells and MFs were co-cultured for seven days, T-cell polarization was analyzed by flow cytometry.In the neointima of GCA arteries, we observed a phenotypic heterogeneity among VSMCs that was consistent with a MF phenotype (α-SMA+CD90+desmin+MYH11+) with a high level of STAT1 phosphorylation. Co-culture experiments showed that MFs sustain Th1/Tc1 and Th17/Tc17 polarizations. The increased Th1 and Tc1 polarization was further enhanced following the stimulation of MFs with IFN-γ and TNF-α, which induced STAT1 phosphorylation in MFs. These findings correlated with increases in the production of IL-1β, IL-6, IL-12 and IL-23 by MFs.Our study showed that MFs play an additional role in the pathogenesis of GCA through their ability to maintain Th17/Tc17 and Th1/Tc1 polarizations, the latter being further enhanced in case of stimulation of MF with IFN-γ and TNF-α.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.