Abstract

Glacial Lake Outburst Floods (GLOFs) constitute a major threat in glacierized regions. Despite a recent increase in the size and number of glacial lakes worldwide, there is only limited evidence that climate change is affecting GLOF frequency. GLOFs are particularly common in the Baker River watershed (Patagonia, 47°S), where 21 GLOFs occurred between 2008 and 2017 due to the drainage of Cachet 2 Lake into the Colonia River, a tributary of the Baker River. During these GLOFs, the increased discharge from the Colonia River blocks the regular flow of the Baker River, resulting in the inundation of the Valle Grande floodplain, which is located approximately 4 km upstream of the confluence. To assess the possible relationship between GLOF frequency and climate variability, four sediment cores collected in the Valle Grande floodplain were analyzed. Their geophysical and sedimentological properties were examined, and radiocarbon-based age-depth models were constructed. All cores consist of dense, fine-grained, organic-poor material alternating with low-density organic-rich deposits. The percentage of lithogenic particles, which were most likely deposited during high-magnitude GLOFs, was used to reconstruct the flood history of the last 2.75 kyr. Results show increased flood activity between 2.57 and 2.17 cal kyr BP, and between 0.75 and 0 cal kyr BP. These two periods coincide with Neoglacial advances that are coeval with periods of lower temperature and increased precipitation. Our results suggest that GLOFs are not a new phenomenon in the region. Although rapid glacier retreat is likely responsible for high GLOF frequency in the 21st century, high-magnitude GLOFs seem to occur more frequently when glaciers are larger and thicker.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.