Abstract
The repulsive guidance molecule (RGM) is a membrane-bound protein that has diverse functions in the developing central nervous system. Identification of neogenin as a receptor for RGM provided evidence of its cell death-inducing activity in the absence of RGM. Here, we show that the serine/threonine kinase death-associated protein kinase (DAPK) is involved in the signal transduction of neogenin. Neogenin interacts with DAPK and reduces DAPK autophosphorylation on Ser308 in vitro. Neogenin-induced cell death is abolished in the presence of RGM or by blocking DAPK. Although neogenin overexpression or RGM downregulation in the chick neural tube in vivo induces apoptosis, coexpression of the dominant-negative mutant or small-interference RNA of DAPK attenuates this proapoptotic activity. Thus, RGM/neogenin regulates cell fate by controlling the DAPK activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.