Abstract

Tandem duplication, one of the major types of duplication, provides the raw material for the evolution of divergent functions. In this study, we identified 1 pair of tandem duplicate genes (AT5G12950 and AT5G12960) in Arabidopsis (Arabidopsis thaliana) that originated within the last 16 million years after the split of Arabidopsis from the Capsella-Boechera ancestor. We systematically used bioinformatic tools to redefine their putative biochemical function as β-L-arabinofuranosidases that release L-Arabinose from the β-L-Araf-containing molecules in Arabidopsis. Comprehensive transcriptomic and proteomic analyses using various datasets showed divergent expression patterns among tissues between the 2 duplicate genes. We further collected phenotypic data from 2 types of measurements to indicate that AT5G12950 and AT5G12960 have different roles resulting in divergent phenotypic effects. Overall, AT5G12950 and AT5G12960 represent putative β-L-arabinofuranosidase encoding genes in Arabidopsis. After duplication, 1 duplicate copy developed diverged biological functions and contributed to a different phenotypic evolution in Arabidopsis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call