Abstract
In tokamak pedestals with subsonic flows the radial scale of plasma profiles can be comparable to the ion poloidal Larmor radius, thereby making the radial electrostatic field so strong that the E × B drift has to be retained in the ion kinetic equation in the same order as the parallel streaming. The modifications of neoclassical plateau regime transport—such as the ion heat flux and the poloidal ion and impurity flows—are evaluated in the presence of a strong radial electric field. The altered poloidal ion flow can lead to a significant increase in the bootstrap current in the pedestal where the spatial profile variation is strong because of the enhanced coefficient of the ion temperature gradient term near the electric field minimum. Unlike the banana regime, orbit squeezing does not affect the plateau regime results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.