Abstract

The number and distribution of habitable planets in the Milky Way is one of the foremost problems of contemporary astrobiological research. We investigate the effects of applying general neocatastrophic paradigm to the evolution of the Galactic Habitable Zone. In this paper, we investigate the limits of simple, 1-dimensional astrobiological models, and consider the role of regulation mechanisms in shapening the 'astrobiological landscape'. We show that the transition from predominantly gradualist to predominantly (neo)catastrophist history of our Galaxy leads to the build-up of large-scale correlations between habitable sites, offering possible keys to such important problems as Carter's 'anthropic' argument and Fermi's paradox. In addition, we consider the possibilities for extending the present class of models into spatially realistic 3-dimensional case via probabilistic cellular automata.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.