Abstract

In quartz-free Fe, Na-poor and high-Mg, Al schists from the Bundelkhand craton in north central India, corundum porphyroblasts in finely interleaved phlogopite–chlorite aggregates with rare clinozoisite are mantled by fine-grained ( 200 μm wide) of phengitic-muscovite and chlorite (phlogopite + corundum + H2O → phengitic-muscovite + chlorite), and <100 μm wide inner collars of margarite–muscovite (corundum + clinozoisite + phengitic muscovite → margarite + muscovite + H2O). Wide-beam electron probe microanalyses indicate Mg in the bi-layered corona increases from corundum outwards, with a complementary decrease in Al and K. Si and Ca increase and then decrease to matrix values. The sharp chemical gradients across the highly structured bi-layered corona are inferred to suggest that the corona-forming reactions were promoted by local grain-boundary-controlled thermodynamic instability as opposed to element transport by advective diffusion. The P–T convergence of KMASH reactions and NCKMASH pseudosection phase relations computed using micro-domain compositions indicate the chlorite–phengitic muscovite outer collar formed at 18–20 kbar and ca. 630°C. The NCKMASH margarite–muscovite inner collar yielded lower metamorphic P–T conditions of 11 ± 3 kbar, ca. 630°C. U–Th–Pb chemical dating of metamorphic monazite and LA-ICPMS U–Pb isotope dating of re-equilibrated zircon yield ca. 2.78 Ga ages, which are interpreted to date corona formation and Neoarchean high-P metamorphism in the Bundelkhand craton, hitherto unknown in the Indian Precambrian. (220)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call