Abstract

The topic of this paper is Nenofex, a solver for quantified boolean formulae (QBF) in negation normal form (NNF), which relies on expansion as the core technique for eliminating variables. In contrast to eliminating existentially quantified variables by resolution on CNF, which causes the formula size to increase quadratically in the worst case, expansion on NNF is involved with only a linear increase of the formula size. This property motivates the use of NNF instead of CNF combined with expansion. In Nenofex, a formula in NNF is represented as a tree with structural restrictions in order to keep its size small and distances from nodes to the root short. Expansions of variables are scheduled based on estimated expansion cost. The variable with the smallest estimated cost is expanded first. In order to remove redundancy from the formula, limited versions of two approaches from the domain of circuit optimization have been integrated. Experimental results on latest benchmarks show that Nenofex indeed exceeds a given memory limit less frequently than a resolution-based QBF solver for CNF, but also that there is the need for runtime-related improvements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.