Abstract

The IKK [IκB (inhibitory κB) kinase] complex is a key regulatory component of NF-κB (nuclear factor κB) activation and is responsible for mediating the degradation of IκB, thereby allowing nuclear translocation of NF-κB and transcription of target genes. NEMO (NF-κB essential modulator), the regulatory subunit of the IKK complex, plays a pivotal role in this process by integrating upstream signals, in particular the recognition of polyubiquitin chains, and relaying these to the activation of IKKα and IKKβ, the catalytic subunits of the IKK complex. The oligomeric state of NEMO is controversial and the mechanism by which it regulates activation of the IKK complex is poorly understood. Using a combination of hydrodynamic techniques we now show that apo-NEMO is a highly elongated, dimeric protein that is in weak equilibrium with a tetrameric assembly. Interaction with peptides derived from IKKβ disrupts formation of the tetrameric NEMO complex, indicating that interaction with IKKα and IKKβ and tetramerization are mutually exclusive. Furthermore, we show that NEMO binds to linear di-ubiquitin with a stoichiometry of one molecule of di-ubiquitin per NEMO dimer. This stoichiometry is preserved in a construct comprising the second coiled-coil region and the leucine zipper and in one that essentially spans the full-length protein. However, our data show that at high di-ubiquitin concentrations a second weaker binding site becomes apparent, implying that two different NEMO–di-ubiquitin complexes are formed during the IKK activation process. We propose that the role of these two complexes is to provide a threshold for activation, thereby ensuring sufficient specificity during NF-κB signalling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call