Abstract

We numerically study phase-separation dynamics of symmetric mixtures of an isotropic liquid and a liquid crystal, incorporating nematohydrodynamics, for the first time. We find that the hydrodynamics not only accelerates the domain growth, but also leads to the breakdown of the morphological symmetry of the two phases, which occupy the same volume: The liquid-crystal-rich phase tends to form isolated domains. This symmetry breaking is revealed to be induced by the flow-alignment coupling due to the anisotropic shape of liquid crystal molecules (kinetic effects), and not by the elastic asymmetry (energetic effects).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.