Abstract
Investigations into nematode density and species assemblages have been conducted in different types of mangroves worldwide, but these studies have typically been limited to one type of plant or tree species. The invasive salt marsh grass Spartina alterniflora has successively invaded native mangroves along the southern coasts of China during the preceding two decades. However, few meiofauna studies on the impacts of S. alterniflora have been conducted, and the consequences of this invasion on ecosystem composition and function remain unclear. The hypothesis of this study was that the spatial and seasonal distribution of nematode assemblages vary significantly among three native mangrove habitats (Kandelia obovata, Aegiceras corniculatum, and Avicennia marina) and between these habitats and a fourth habitat that was colonized by S. alterniflora, in Zhangjiang Estuary, China. Our results demonstrated that different species dominated in different habitats seasonally. Highly significant differences in density, number of species, diversity index, and maturity index were present among the four habitats. ANOSIM results revealed that there were significant differences in nematode assemblages among the four habitats and seasons, with the S. alterniflora habitat exhibiting the lowest mean values of number of species, Shannon-Wiener diversity index, richness index, and maturity index in the four seasons. This suggests that the presence of S. alterniflora disrupted nematode assemblages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.